Как обеспечить постоянный рост производительности в рамках ограниченных по энергопотреблению устройств, каковыми являются смартфоны или планшеты? Можно создать более энергоэффективную микроархитектуру, но это возможно только до определённой степени. Можно перейти на более совершенный процесс производства, но и этот шаг сегодня уже не даёт прежних преимуществ. Раньше компании полагались на оба подхода, но сегодня этого уже недостаточно. Индустрия постепенно идёт по пути гетерогенных вычислений: размещения высокопроизводительных ядер рядом с маломощными, но энергоэффективными собратьями, и переключения между ними при необходимости.
NVIDIA недавно представила архитектуру процессора Tegra 3 (Kal-El). Компания рассказала о том, что система на чипе имеет 5 вычислительных ядер Cortex-A9, но лишь 4 из них видимы для ОС. При запуске простых фоновых задач работает только одно энергоэффективное ядро Cortex A9, а высокопроизводительные находятся в отключённом состоянии. Как только системе потребуется производительность, задачи перенаправляются на мощные ядра, а энергоэффективное отключается.
Решение NVIDIA полагается на идентичные ядра, но использующие различные транзисторы (LP и G), однако подход не слишком отличается, если использовать к тому же различные архитектуры ядер. Когда NVIDIA разрабатывала свой чип, ARM не могла предложить подходящего энергоэффективного ядра, которое могло бы использоваться как само по себе, так и в качестве ядра-спутника в системе на чипе с Cortex A15. Теперь такое ядро есть, и оно получило имя Cortex A7.
Источник: 3dnews.ru
|